If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-27x+13=0
a = 13; b = -27; c = +13;
Δ = b2-4ac
Δ = -272-4·13·13
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{53}}{2*13}=\frac{27-\sqrt{53}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{53}}{2*13}=\frac{27+\sqrt{53}}{26} $
| 6u+10=7 | | Y=3/2x+4/3 | | 5t2+39t+54=0 | | x^2+28x-23=40 | | X^2+40x-15=40 | | 2(3w-1)-4w=-3(w+2)+2 | | 1000-4/5=x | | x(6)-12+4=30 | | X^3+4x=40 | | 3(s+4)=1 | | 15+2t=17-t | | 12h-4=12 | | 4x/15=2 | | 52=d−2/4 | | 2x-73=823 | | x-73-x=823 | | x-73+x=823 | | (h^2/2)=18 | | x-64+x=636 | | 5x+2(x-5)=4x | | 9x+3=32 | | x+8+x=82 | | b-6/5=-1 | | 9x2-120x-2025=0 | | x^2-36=(x-6)(x+6) | | 5(x-2)=4(2x+) | | 3(x^2-2x-4)=-2(x^2+3x+6) | | (x-4/2)=6 | | 2x(2x)=400 | | 9x=11-8 | | 32(x+3)=45x−8 | | (3x+20)(+2x+80)=180 |